A Consistent Diagnostic Test for Regression Models Using Projections
نویسنده
چکیده
This paper proposes a consistent test for the goodness-of-fit of parametric regression models which overcomes two important problems of the existing tests, namely, the poor empirical power and size performance of the tests due to the curse of dimensionality and the choice of subjective parameters like bandwidths, kernels or integrating measures. We overcome these problems by using a residual marked empirical process based on projections (RMPP). We study the asymptotic null distribution of the test statistic and we show that our test is able to detect local alternatives converging to the null at the parametric rate. It turns out that the asymptotic null distribution of the test statistic depends on the data generating process, so a bootstrap procedure is considered. Our bootstrap test is robust to higher order dependence, in particular to conditional heteroskedasticity. For completeness, we propose a new minimum distance estimator constructed through the same RMPP as in the testing procedure. Therefore, the new estimator inherits all the good properties of the new test. We establish the consistency and asymptotic normality of the new minimum distance estimator. Finally, we present some Monte Carlo evidence that our testing procedure can play a valuable role in econometric regression modeling. Juan Carlos Escanciano Reyero Universidad de Navarra, Departamento de Métodos Cuantitativos Campus Universitario, 31080 Pamplona [email protected] Acknowledgments The author thanks Carlos Velasco and Miguel A. Delgado for useful comments. The paper has also benefited from the comments of two referees and the Co-editor. Research funded by the Spanish Ministry of Education and Science reference number SEJ200404583/ECON and by the Universidad de Navarra reference number 16037001. A CONSISTENT DIAGNOSTIC TEST FOR REGRESSION MODELS USING PROJECTIONS J. Carlos Escanciano Universidad de Navarra June 1, 2005
منابع مشابه
Pixel selection by successive projections algorithm method in multivariate image analysis for a QSAR study of antimicrobial activity for cephalosporins and design new cephalosporins
Thirty-one Cephalosporin compounds were modeled using the multivariate image analysis and applied to the quantitative structure activity relationship (MIA-QSAR) approach. The acid dissociation constants (pKa) of cephalosporins play a fundamental role in the mechanism of activity of cephalosporins. The antimicrobial activity of cephalosporins was related to their first pKa by different models. B...
متن کاملPixel selection by successive projections algorithm method in multivariate image analysis for a QSAR study of antimicrobial activity for cephalosporins and design new cephalosporins
Thirty-one Cephalosporin compounds were modeled using the multivariate image analysis and applied to the quantitative structure activity relationship (MIA-QSAR) approach. The acid dissociation constants (pKa) of cephalosporins play a fundamental role in the mechanism of activity of cephalosporins. The antimicrobial activity of cephalosporins was related to their first pKa by different models. B...
متن کاملSome Conditions for Characterizing Minimum Face in Non-Radial DEA Models with Undesirable Outputs
The problem of utilizing undesirable (bad) outputs in DEA models often need replacing the assumption of free disposability of outputs by weak disposability of outputs. The Kuosmanen technology is the only correct representation of the fully convex technology exhibiting weak disposability of bad and good outputs. Also, there are some specific features of non-radial data envelopment analysis (DEA...
متن کاملComparison of logistic regression and neural network models in predicting the outcome of biopsy in breast cancer from MRI findings
Background: We designed an algorithmic model based on the logistic regression analysis and a non-algorithmic model based on the Artificial Neural Network (ANN). Materials and methods: The ability of these models was compared together in clinical application to differentiate malignant from benign breast tumors in a study group of 161 patients' records. Each patient’s record consisted of 6 subjec...
متن کاملExploring the Use of Random Regression Models withLegendre Polynomials to Analyze Clutch Sizein Iranian Native Fowl
Random regression models (RRM) have become common for the analysis of longitudinal data or repeated records on individual over time. The goal of this paper was to explore the use of random regression models with orthogonal / Legendre polynomials (RRL) to analyze new repeated measures called clutch size (CS) as a meristic trait for Iranian native fowl. Legendre polynomial functions of increasing...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005